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3D STOKES FLOWS 

RICHARD Q. N. ZHOU* 
Department of Chemical Engineering and Applied Chemistry. University of Toronto, Toronto, Ontario, Canada M5S IA4 

SUMMARY 
Preconditioned conjugate gradient algorithms for solving 3D Stokes problems by stable piecewise discon- 
tinuous pressure finite elements are presented. The emphasis is on the preconditioning schemes and their 
numerical implementation for use with Hermitian based discontinuous pressure elements. For the piecewise 
constant discontinuous pressure elements, a variant implementation of the preconditioner proposed by 
Cahouet and Chabard for the continuous pressure elements is employed. For the piecewise linear discon- 
tinuous pressure elements, a new preconditioner is presented. Numerical examples are presented for the 
cubic lid-driven cavity problem with two representative elements, i.e. the Q2-PO and the Q2-Pl brick 
elements. Numerical results show that the preconditioning schemes are very effective in reducing the number 
of pressure iterations at very reasonable costs. It is also shown that they are insensitive to the mesh Reynolds 
number except for nearly steady flows (Re,+O) and are almost independent of mesh sizes. It is demonstrated 
that the schemes perform reasonably well on non-uniform meshes. 
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1. INTRODUCTION 

Many numerical methods for solving incompressible Navier-Stokes equations, such as semi- 
implicit methods and explicit methods, include a Stokes problem solver. In semi-implicit 
methods, the non-linear convection term and the incompressibility condition are decoupled. That 
reduces the problem to several subproblems, including a Stokes problem. If the Reynolds number 
is small, an explicit method can be used, and the problem is reduced to solving a sequence of 
Stokes problems. Therefore, solving Stokes problems efficiently, especially in three-dimensional 
space, is crucial to the overall efficiency of these methods. 

Many finite-element algorithms have been used to solve the Stokes problems. For three- 
dimensional (3D) and large-scale 2D problems, the direct methods, e.g. penalty methods, are 
inefficient and are limited to relatively small mesh' due to large CPU time and storage 
requirements. In these cases, iterative methods are most attractive because they require relatively 
small storage and can run more efficiently, especially on vector and parallel computers. It has 
been shown that the preconditioned Uzawa-type conjugate gradient methods are effective in 
solving Stokes problems. Most of the preconditioning schemes are based on incomplete factoriz- 
ation of the system matrix or its approximation which needs to  be explicitly constructed. This 
approach is general, but the process can be very expensive. Although a proper preconditioner can 
substantially accelerate the convergence, it is essential to minimize its cost and complexity, 
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especially for three-dimensional problems, so that the gain in efficiency achieved by reducing the 
number of iterations is not offset by the preconditioning costs. 

Recently, based on Fourier analysis, Cahouet and Chabard2 proposed a continuous precon- 
ditioning operator. Its unique advantage is that the preconditioning is done by solving two 
continuous equations. Consequently, the expensive construction and incomplete factorization of 
the system matrix or its approximation is avoided. Furthermore, these continuous equations can 
be solved on a mesh much coarser than that on which the momentum equation is based. Hence, 
solving the preconditioning equations requires less storage and CPU time than solving mo- 
mentum equation. They also showed that the convergence rate was almost independent of the 
mesh sizes for a given problem. 

However, numerical results of the preconditioning idea have been reported only with respect to 
the elements where the pressure is continuous across the element b ~ u n d a r i e s . ~ - ~  There is no 
information on the effectiveness of the scheme when discontinuous pressure elements are used. It 
is conceivable that the implementation of the preconditioner would be different if piecewise 
discontinuous pressure elements were used, where the pressure space does not contain the 
solution of the continuous preconditioning equation. Therefore, it is desirable to develop 
numerical algorithm specifically for use of discontinuous pressure elements. 

Our goal is to develop a finite element scheme to simulate 3D cardiovascular flow problems, 
where large recirculation zones are expected. It has been that continuous pressure 
elements often result in unsatisfactory flow patterns in the regions where there is a large amount 
of recirculation. It is generally thought that stable discontinuous pressure elements are superior in 
this case because they guarantee elementwise mass conservation, and thus yield better flow 
 pattern^.^ Elementwise mass conservation must exclude continuous pressure elements. Therefore, 
it is of practical importance and interest to develop an efficient preconditioned conjugate gradient 
finite element scheme specifically for the stable discontinuous pressure elements. 

The 2D Q2-P1 element with complete biquadratic velocity and linear discontinuous pressure is 
probably the best element known for incompressible flow simulation.8 Its 3D counterpart, the 3D 
Q2-P1 element with complete triquadratic velocity and piecewise linear discontinuous pressure, 
has been shown to yield good results,' probably due to its second-order accuracy. On the other 
hand, more computational labour is required to reach convergence in comparison to piecewise 
constant discontinuous pressure elements. Generally, for a fixed convergence criterion more 
iterations are needed while using piecewise discontinuous linear pressure elements than while 
using piecewise discontinuous constant pressure elements, e.g. Q2-PO, since in addition to the 
elementwise mass conservation, the three moments of the elemental velocity divergence with 
respect to the centroid of an element must also vanish. 

In this paper, we present preconditioned Uzawa-type conjugate gradient finite element algo- 
rithms for stable Hermitian based piecewise discontinuous pressure elements. We are primarily 
concerned with developing efficient preconditioning methods. The algorithms can be effectively 
applied to any stable hexahedral Hermitian piecewise discontinuous pressure elements where the 
pressure is either linear or constant, since the only difference between the elements with the same 
pressure interpolation is the number of velocity unknowns. To reduce coding labour, we choose 
the Q2-PO element (triquadratic velocity and piecewise constant pressure) to represent the class of 
stable hexahedral piecewise constant discontinuous pressure elements, such as Q f - P ,  and 
R:-Po,8 and the Q2-P1 element to represent the class of stable hexahedral piecewise linear 
discontinuous pressure elements, e.g. Q:-P,  .9 

Section 2 describes the problem and the finite element formulation. In Section 3 the Uzawa- 
type conjugate gradient methods and the preconditioning procedure are outlined. Section 4 
discusses the numerical results. Conclusions are given in Section 5. 
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2. FINITE ELEMENT FORMULATIONS 

We consider the transient Stokes flow problem in a 3D domain fl with boundary I-: 
au - vV2u + Vp = f, 

U l r  = g, 

v*u=o, (1) 

where u and p are, respectively, the velocity vector and pressure at the current time level; f is 
a known vector; the constant a depends on the time discretization scheme and v is the reciprocal 
of the Reynolds number. Global mass conservation requires that 

lr n*gdr=O,  (2) 

where n is the outward normal vector on r. 
velocity boundary conditions, the discrete form of formulation (2) is 

Using a finite element triangulation Fh of fl into hexahedrons and taking into account the 

(3) 

BU = H, (4) 

AU + BTP = F. 

where U and P are the vectors of the unknown nodal velocity and pressure, respectively, F and 
H are known vectors, B is the divergence matrix and 

A = aM + vS, ( 5 )  

where M is the consistent mass matrix and S is the diffusion matrix. Note that when the 
discontinuous piecewise linear pressure is used, P also contains the unknown pressure gradient 
values at the element centroids. The solution of equations (3) and (4) can be formally expressed as 

(6)  

(7) 

BA - ' B ~ P  = BA - I F  - H, 

U = A-'(F - BTP). 

Since the system matrix L = BA- 'BT is symmetric, positive-definite and is only implicitly defined, 
an iterative approach is most attractive. 

The linear system of equations (3) and (4) can be solved using the Uzawa-type preconditioned 
conjugate gradient algorithm defined as follows: 

Given initial guess Po and convergence criterion E ;  

A U ~  = F - B ~ P ~ ,  
Ro = BUo - H, 
If 11 Ro I I  I E stop; 
CGo=Ro; 
Wo=G,; 
AZo =BTW,; 
For n 20: 
p .  = RT Gn/GTBZn; 
Pn+ I =Pn-PnWn; 
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Note that in each iteration, the momentum equation AZ=BTW has to be solved for the 
velocity field or its associated direction vector Z. It is clear that the efficiency of the algorithm is 
determined by the number of pressure iterations and the efficiency in solving the preconditioning 
equation CG=R and the momentum equation. Since solving the momentum equation is 
generally expensive, a good preconditioning scheme must be effective in reducing the number of 
pressure iterations which in turn reduces the number of momentum equations to be solved. 

Since the three velocity components in the momentum equation (7) are decoupled, they are 
solved separately. Thus, each velocity component is found by solving a smaller linear system. In 
this paper, the momentum equation for each velocity component is solved by the preconditioned 
conjugate gradient method, where the preconditioning scheme is the incomplete Cholesky 
factorization of A (ICCG). A compact storage scheme is used to store A, in which only the 
non-zero entries are stored. The details can be found in Reference 10. In general, the convergence 
criterion E, for solving equation (7) depends on the pressure iteration convergence criterion E. 

Unless otherwise stated, we set E =  and E,,,= lo-*. We also compare the efficiency of the 
ICCG method with that of the conjugate gradient with diagonal scaling preconditioning for 
solving the momentum equation (DSIC) (see Table VII). 

3. PRECONDITIONERS 

Recently, Cahouet and Chabard2 proposed a continuous preconditioning operator 

(9) C 1 = ~ 1 -  1 - a v  -2 ,  

where I is the identity operator and V - 2  is the inverse Laplacian operator. Taking the velocity 
divergence to be a simple harmonic function, they showed that the gradient method with C1 as 
the preconditioning operator is independent of the wavelength. Hence, the gradient method 
works equally well over the entire spectrum. This indicates that (see Appendix for proof) 

C1 =-V - (a1 - vV2)- lv. (10) 

The right-hand side term of equation (10) is exactly the continuum system operator corres- 
ponding to the discrete system matrix L. Equation (10) means that C1 is the best continuum 
preconditioner in the sense that in the continuum domain, the preconditioned gradient method 
gives the exact solution in one pressure iteration regardless of the initial pressure guess. 

It should be pointed out that equation (10) does not guarantee the equality of their discrete 
matrices. A discrete form of C1 is not equal to the discrete system matrix L. However, the idea is 
that a preconditioning matrix C should be spectrally close to L such that C-'L=I. Since C1 is 
identical to the continuum system operator, we hope that its discrete matrix would not be too 
diferent from L. The other crucial criterion for a preconditioner is that it must be easy to 
implement and not too expensive to solve. Equation (9) suggests that the preconditioning can be 
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decomposed into solving an algebraic equation and a Laplace equation, both of which are easy 
and inexpensive to solve. 

In practice, the solution of the continuum preconditioning equation is decomposed as follows: 

g = c; ‘v - u = VI - ‘v - u- aV -2v u = gs + gu, (1 1) 

where the subscripts s and u symbolize the steady and unsteady parts. It is clear that gs and gu are 
governed by 

Ig, = vv - u. (12) 

where the homogeneous Neumann boundary condition is imposed on gu. Note that gs does not 
need boundary condition. It is well known that the solution of equation (13) is arbitrary up to an 
additive constant. To fix this constant, we require that 

ln gu dR =O. 

The boundary condition for gu is the difference of that for g and the boundary values of gs. The 
preconditioned gradient pressure iteration is given by 

p“ + 1 = p” - L,g”. (15) 

If a pressure boundary condition which p” must satisfy is given, g must satisfy the corresponding 
homogeneous boundary condition. Unfortunately, for most flow problems, the pressure bound- 
ary condition is often undefined. We are left with no boundary condition for g. hence for gu. Using 
the argument of boundary layer, Cahouet and Chabard’ recommended the homogeneous. 
Neumann condition for the pressure 

Equation (1 6) can be quite inaccurate for certain flow problems, such as the outflow boundary 
condition of a duct flow, where it is clearly violated. The lack of boundary condition for pressure 
makes the choice of that for g and gu somewhat arbitrary. A general rule is that g must vanish with 
V.U. Since gs satisfies this rule, so must 9.. The homogeneous Neumann condition, combined 
with equation (14), guarantees that g,+O as V-u+O, while it imposes least constraints on gu. It is 
also the easiest for finite volume implementation. 

While a weak solution gs of equation (12) belongs to &(a), a weak solution gu of equation (13) 
must belong to H,(R). The preconditioning operator C1 has been applied to the continuous 
pressure elements, i.e. P2-P1 elementZ and P1-P1 is0 P2 e l e m e n ~ ~ , ~  and a great improvement in 
convergence was achieved. For the discontinuous pressure elements, the pressure space does not 
belong to H1(R). Hence, a solution gu in the discontinuous pressure space does not exist. 
Therefore, a weak solution g does not exist. 

3.1. Preconditioning scheme for Q2-PO element 

G in algorithm (8) is given by 
To extend C1 to Q2-PO element, we assume that the preconditioned discrete gradient direction 

G = G, + G,, (17) 
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where G, G, and G, are vectors of dimension nel which is the number of elements. We further 
assume that g, E H1 (a), and gs = G," on the kth element 4 where G: is the kth component of G,. It 
is obvious from equation (12) that G," is given by 

~ e : G : d $ = v k G : = v ~ 4 v . o d ~ = v l l k ,  k = l , .  . .,riel, (18) 

where v k  is the volume of e:. Solving equation (18) takes only one vector operation and hence, 
needs virtually no computational labour. 

Let & be the value of g, at the centroid of e:; equation (13) can be solved for gt using the 
finite-volume method" 

V2g,d&= -ddde:= -a sek~-ude:=-aRk,  =0, k = l ,  . . . , nelr (19) s ae: agu Jn 
where aef: is the boundary of ef: and n the outward normal vector of ae:. 

Applying the finite-volume method to equation (1 9) results in a seven-point computational 
stencil. The coefficient matrix is symmetric and semipositive-definite due to the homogeneous 
Neumann boundary conditions. The resulting algebraic equation is solved using the precon- 
ditioned conjugate gradient method where the preconditioning matrix is the tridiagonal part of 
the coefficient matrix. Although the algebraic system matrix of equation (19) is semidefinite and 
hence is singular, we found that it converges faster without specifying the arbitrary constant in the 
solution of equation (19). Once a converged solution of equation (19) is found, we subtract from it 
a constant to satisfy equation (14). The kth component of G, is then set by 

G,k=g:. (20) 
The algorithm is particularly suitable for vectorization. 

Note that the right-hand side terms of equations (18) and (19) are exactly the velocity 
divergence residual vector R = BU -H in equation (8) and are available from the pressure 
iteration. This preconditioning scheme is therefore very efficient. 

3.2. Preconditioning scheme for Q2-PI element 

For the Q2-PI element, the pressure space is the set of piecewise discontinuous linear 
polynomials. As with Q2-PO element, the preconditioned gradient vector G is split into two parts 
as given by equation (17). Now G, G, and G, are vectors of dimension 4nel because the unknown 
pressure P also contains the pressure gradients at the element centroids. 

Our numerical experiments suggest that equation (12) can be extended to the Q2-P1 element. 
On the element ek, we assume the solution gs takes the form 

A 

i = l  

where $!=xi-&, i =  1,2,3, $: = 1, xfc is the centroidal co-ordinate of e:, and G: is a component 
of G,. It is clear that G:4 can be interpreted as the centroidal value of gs and G;, i =  1,2,3 is the 
centroidal values of Jgs/axi. Substituting equation (21) into equation (12) yields 

G:4=~R:/V,, k =  1, . . . , riel, 

C G:J +.+, kde:=vR:-Gt4 +fdef:, i = l ,  . . . , 3; k =  1, .  . . , riel, (22) 
j=1 4 
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where the weighted velocity divergence residual 

Rf=Ie:$lV*udef, i = l , .  . . ,4; k = l , .  . . ,riel 

are components of the residual vector R, hence, do  not need to be recalculated. Equation (22) 
involves riel 3 x 3 symmetric positive-definite linear systems and the computational cost is 
negligible with respect to solving the momentum equation (see Table V). The algorithm (22) can 
easily be vectorized. 

Unfortunately, our numerical experiments appear to indicate that equation (13) cannot be used 
for the Q2-P1 element due to the presence of the pressure gradient at the element centroids. The 
numerical results suggest that the centroidal gradients dg,/dxi are not the proper components of 
G,. Therefore, a new preconditioner for calculating G. has to be found. 

Since BM-'BT is the discrete form of the Laplacian, we define the unsteady preconditioned 
gradient direction G, by 

BM; ' BTG, = u(BU - H) = uR. (24) 

where MI is the lumped mass matrix. The preconditioning operator defined by equations (22) and 
(24) can be written as 

C; = VI - + a ( ~ ~ ;  B ~ )  - l .  (25) 

Note that for el, the steady part is implemented by solving a continuous equation, while the 
unsteady part is implemented discretely. 

Equation (24) is solved by the ICCG method where the coefficient matrix and its incomplete 
Cholesky factorization are constructed and stored. Note that the matrix B, however, is not 
globally formed to save storage. BM; ' BT is constructed directly from elemental contribution. 
Again, only the non-zero entries are stored. The matrix BM;' BT has, compared to A, slightly 
fewer non-zero entries and lower sparsity. Its construction time is about the same as that of A and 
its incomplete factorization time is slightly more than half of that for A. We set the convergence 
criterion for solving equation (24) to be equal to E. We found that more iterations are required for 
equation (24) than for the momentum equation (7). However, the numerical results show that it 
does not take more time to solve equation (24) than equation (7) (see Table VI). Therefore, solving 
equation (24) requires less CPU time and storage than solving equation (7). 

We have also tested C2 and C3 defined by 

C;'=vI-' +a(B(diagM)-'BT)-' and C;' =(B(diagA)-'BT)-'. (26) 
These cases have been examined for P1-P1 is0 P2 element by Carriere and Jeandel: who 
reported that C3 gave the best convergence rate. However, we found that for the Q2-P1 element, 
C3 does not converge for the steady flow using the refined non-uniform mesh. For the coarse 
uniform mesh, C3 converges with a significantly slower rate in comparison to el. As to C2, we 
found it to be slower than el. The performance of C2 deteriorates as a increases, indicating that 
C2 is not suitable for transient flow analysis with small time step. Both C2 and C3 require the 
same computational costs as el. 

Another preconditioning scheme for the Q2-P1 element is the block scaling where the 
preconditioning is done by equation (22) only. The advantage of this idea is that it is very cheap. 
Our experience with the block scaling were that it does give a convergent solution, although for 
some cases we have run, a slightly smaller E, was necessary. Generally, the pressure iteration 
convergence is slow and deteriorates quickly with a as expected. For the unsteady flow (Re,,, = 10) 
with the intermediate uniform mesh (see Table I), CG scheme with the block scaling needs 43 
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Table I. The characteristics of uniform and non-uniform meshes 

Mesh Number of Number of free Number of Number of Number of Number of 
elements velocity nodes pressure nodes pressure nodes DOF DOF 

Q2-PO Q2-P1 Q2-PO Q2-P1 
~~ ~ 

Coarse 
5 X 5 X 5  125 729 125 500 2312 2687 
Intermediate 

6859 lo00 4000 21 577 24577 1 o x 1 o x 1 0  lo00 
Refined 
15 x 15 x 15 3375 24 389 3375 13 500 76542 86667 

iterations to converge while CG with el requires only 8 iterations. The total CPU time for the 
block scaling CG is 493 s. The total time on iteration for CG with el is 175 s, and the time on 
construction and incomplete Cholesky decomposition of BM;'BT is 89 s. Hence, the block 
scaling CG method requires about twice CPU time as does the present scheme. The difference 
widens with the mesh non-uniformity and decreasing mesh size. Therefore, the block scaling is 
less effective than is el in reducing the pressure iteration number, and the overall cost of the block 
scaling CG is far more expensive than the present scheme, especially for large mesh. For steady 
flow, c ,  reduces to the block scaling. 

The effectiveness of the present preconditioners, i.e. equations (18) and (19) for the Q2-PO 
element and (25) for the Q2-P1 element, is demonstrated by applying the preconditioned 
conjugate gradient algorithm to the 3D lid-driven cavity flow in an unit cube with the top face 
moving at the unit speed. The numerical integrations were performed by the 3 x 3 x 3 Gaussian 
quadrature. All computations were performed using double precision and were run on the Apollo 
DNlOOOO at The University of Michigan and the DEC5000 workstation at Chalk River Laborat- 
ories of Atomic Energy of Canada Limited. 

4. NUMERICAL RESULTS AND DISCUSSIONS 

We define the average convergence rate as 

where n is the smallest number of pressure iterations which reduces the norm of the initial velocity 
divergence residual 11 Ro 11 to less than E 1) Ro 11, where E is the convergence criterion. In practice, 
E depends on individual problems and the accuracy one wants to obtain. In this paper, we choose 
E = In the following figures, the norm of the velocity divergence residual 1) R ) I  is normalized 
with respect to the initial value 11 Ro 11. 

We construct three uniform and three non-uniform meshes consisting 5 x 5 x 5 (coarse), 
10 x 10 x 10 (intermediate) and 15 x 15 x 15 (refined) elements. The details of the mesh specifica- 
tion are given in Table I. The numbers of the velocity nodes are equal to those of the three 
uniform meshes used by Cahouet and Chabard' for the P2-P1 elements, so that a comparison can 
be made. 
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The elemental corner nodal points of the non-uniform meshes are defined by 

i - 1  7t 

N 2  
xi=1-cos--, i=1,2,. . . , N+1, 

. j - l n  
yj=sin - - 

N 2’ 
j =  1,2, . . . , N+1, 

z k = / ( 7 ) ,  k= 1,2,. . . , N +  1, 

where N =  5,10, 15. For N = 10 (intermediate mesh), the ratio of the largest to the smallest scale is 
equal to 26. This results in a system with worse condition number (than that of a uniform mesh, 
where this ratio is unity). Since this ratio increases with N, the system condition number also 
increases with N. Therefore, they are valuable test cases to illustrate how the scheme performs for 
stiff systems. 

The efficiency of the preconditioned scheme depends on the mesh Reynolds number given by 

ah2 
Re,=--, 

V 

where h= 1/N is the characteristic length of the mesh. Obviously, this length is the average value 
when the non-uniform meshes are used. The mesh Reynolds number characterizes the influence of 
the sizes of the time and spatial discretization. For each mesh, two mesh Reynolds numbers are 
used. The case Re, =O corresponds to steady flow, and the case Re, = 10 corresponds to unsteady 
flow. These two values characterize the typical efficiency of the scheme. For a given uniform mesh, 
x approaches a constant as Re,--tm as shown in Figure 4. 

Figures l(a) and l(b) show the convergence of the normalized velocity divergence residual of 
the preconditioned scheme using uniform Q2-PO elements. The results of the non-preconditioned 
scheme are also shown for comparison. It can be seen that the residual decays faster for the 
unsteady cases than for the steady cases. For the unsteady cases, the average rate of convergence 
x defined by equation (27) is about the same for all three meshes. This indicates that for unsteady 
flow, the condition number of the preconditioned system of a uniform Q2-PO element mesh is 
independent of the mesh size h. For the steady cases, Figure l(a) suggests that x aproaches 
a constant as the mesh is uniformly refined. 

The effectiveness of the preconditioner is clearly demonstrated. Figure l(a) shows that for the 
steady case, the residual of the non-preconditioned scheme is initially identical with that of the 
preconditioned scheme and then starts to deviate and oscillate. This oscillation is delayed by 
increasing the mesh size because the non-preconditioned system is better conditioned for 
a smaller mesh. It is caused by the errors in solving the momentum equation. Figure 3 shows that 
if E, is reduced from lo-* to lo-”, the oscillation occurs significantly later. If a direct method, 
such as the skyline method which has an equivalent convergence criterion of&,= is used to 
solve the momentum equation, the velocity divergence residual decreases monotonically to lo-” 
before it starts to oscillate. However, a direct method has very large storage requirements and 
cannot be used for large meshes. Therefore, preconditioning is necessary not only for reducing the 
number of iterations, but also for obtaining a converged solution. 

It is found that the slow convergence of the non-preconditioned scheme for the unsteady cases 
as shown in Figure l(b) is not caused by E, provided that E, I ;~ / l0 .  This can be seen from the fact 
that the decay history of the non-preconditioned scheme deviates from that of the preconditioned 
ones right from the beginning. 
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0 5 10 15 20 lo-’ 

(4 ITERATION NUMBER 

I 
5 10 15 20 25 1 0 ’  

(b) ITERATION NUMBER 

0 

Figure 1 .  Convergence of velocity divergence residual for 3D lid-driven cavity flow using Q2-PO element, uniform 
mesh: (a) steady flow, Re,=O; (b) unsteady flow, Re,= 10. -*-, preconditioned CG scheme--coarse mesh -0-, 

preconditioned CG scheme-intermediate mesh; -+-, preconditioned CG scheme-refined mesh; - -  - * ---, non- 
preconditioned CG scheme-coarse mesh; - - - 0 - - -, non-preconditioned CG scheme-intermediate mesh; - - - + - - -. non- 

preconditioned CG scheme-refined mesh 
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Figures 2(a) and 2(b) show the decay history of the normalized velocity divergence residual 
using the Q2-P1 element. Again, convergence is faster for the unsteady cases. The convergence 
rate is insensitive to the mesh size for both steady and unsteady flows indicating that the 
preconditioned system condition number is independent of h. By comparison, the residuals of the 
non-preconditioned algorithm shown in Figures 2(a) and 2(b) are oscillatory and non-convergent 
because E,= is too large. Figure 3 shows that when E,= lo-”, one obtains an oscillatory 
but convergent history of velocity divergence residual. The oscillation in the residual can be 
eliminated only through proper preconditioning. As for the Q2-PO case, reducing E, does not help 
to accelerate the convergence. 

For the uniform meshes, more momentum equation iterations are required for the steady case 
than for the unsteady case, indicating that the matrix A of the momentum equation is better 
conditioned for the unsteady flow. This gives a better conditioned system matrix L for the 
unsteady case. Therefore, the preconditioned scheme converges faster for the unsteady flow than 
for the steady flow. 

Figure 4 shows the dependency of the average convergence rate x on the mesh Reynolds 
number Re, with respect to the uniform intermediate mesh. For Re, 2 5, x is almost constant for 
both elements, indicating that the preconditioned algorithms are insensitive to time step size 
except for very large times steps or for very small h, which effectively correspond to nearly steady 
flows. The slow convergence occurs for the steady cases where Re,=O. 

Many flow problems require non-uniform meshes when the solutions vary rapidly from one 
region to another. A good numerical scheme must maintain its characteristics when non-uniform 
meshes are used. Figures 5(a) and 5(b) show the normalized velocity divergence residual versus 
iteration number for the non-uniform Q2-PO meshes defined by equation (28). The precon- 
ditioned scheme still performs reasonably well, although, as expected, it converges considerably 
slower than it does with the uniform meshes. Contrary to the cases of the uniform meshes, the 
scheme converges slower for the unsteady cases than for the steady cases when the non-uniform 
meshes are used. This is probably due to the fact that the truncation error in solving equation (19) 
is of the order O(h) with respect to the non-uniform meshes while it is of the order O ( h 2 )  with 
respect to the uniform mesh. 

Figures 6(a) and 6(b) show the performance of the preconditioned scheme with respect to the 
non-uniform Q2-P1 element. One can see that the convergence strongly depends on the mesh 
size. The computational cost using non-uniform Q2-P1 elements is significantly higher in 
comparison with that of the uniform meshes because the number of iterations for solving the 
pressure equation, the momentum equation and the preconditioning equation (24), all, signifi- 
cantly increase. 

The performance of the present preconditioned schemes is summarized in Tables 11-VI where 
the results of the ten-node P2-P1 tetrahedral element used by Cahouet and Chabard2 are also 
listed for comparison. Table I1 shows that for the unsteady cases, the convergence rates of the 
present preconditioned algorithm are about the same as that of the compatible discretization with 
the P2-PI element. Table I11 shows that the present algorithms converge faster than that using 
the P2-P1 element for the steady cases, while the steady preconditioning costs virtually nothing 
(see Table V). The average convergence rates for the non-uniform meshes are listed in Table IV. 
Tables V and VI show the average CPU time per pressure iteration and per preconditioning using 
the DEC5000 workstation. It is shown that the costs of solving the preconditioning equations 
(18), (19) and (22) are indeed negligible. The slightly smaller CPU time per iteration with the 
Q2-P1 element than that with the Q2-PO element, as shown in Table V for the intermediate mesh, 
is because Q2-P1 element requires more iterations and the last several iterations take far smaller 
CPU time than the average value. Thus, although the total iteration time using the Q2-P1 
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Figure 2. Convergence of velocity divergence residual for 3D lid-driven cavity flow with Q2-P1 element, uniform 
mesh: (a) steady flow, Re,=O; (b) unsteady flow, Re,=10. -*-, preconditioned CG scheme-oarse mesh; -0-, 
preconditioned CG scheme-intermediate mesh; -+-, preconditioned CG scheme-refined mesh; - -  - * - --, non- 
preconditioned CG scheme-oarse mesh - - - 0 - - - , non-preconditioned CG scheme-intermediate mesh; - - - + - - -, non- 

preconditioned CG scheme-refined mesh 
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Figure 3. Convergence of velocity divergence residual for steady 3D lid-driven cavity flow using the non-preconditioned 
CG scheme and the uniform intermediate mesh: -o-, Q2-PO element; -*-, Q2-P1 element. The convergence criterion 

for solving the momentum equation is E,= 10- l 3  

MESH REYNOLDS NUMBER 

Figure 4. Influence of the mesh Reynolds number on the convergence for 3D lid-driven cavity flow with respect to the 
uniform intermediate mesh: -*-, Q2-PO element; - - - +- - -, Q2-PI element 
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Figure 5. Convergence of velocity divergence residual for 3D lid-driven cavity flow with Q2-PO element, non-uniform 
mesh (a) steady flow, Re,=O; (b) unsteady flow, Re,= 10. -*-, coarse mesh -o-, intermediate mesh: -+ -, refined 

mesh 
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Figure 6. Convergence of velocity divergence residual for the steady 3D lid-driven cavity flow with Q2-P1 element, 
non-uniform mesh: (a) steady flow, Re,=O; (b) unsteady flow, Re,= 10. coarse mesh; -0-, intermediate mesh -+-, 

refined mesh 
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Table 11. Convergence rates for the 3D unsteady lid-driven cavity flow (Re,,, = 10, 
uniform mesh) 

Mesh Q2-PO Q2-P1 P2-P1 (elas.)* P2-P1 (comp.)* 

Coarse 0.15 0.16 0 3  5 x 5 049 0.14 
Intermediate 0.17 0.16 0 3  < x 5 0-5 0.15 
Refined 0.17 0-16 0.3 x 0.5 0.14 

* The results of P2-P1 element are from Cahouet and Chabard.’ clas. =direct discretization 
of (13), comp. = compatible discretization 

Table 111. Convergence rates for the 3D steady lid- 
driven cavity flow (Re,=O, uniform mesh) 

Mesh Q2-PO Q2-P1 P2-P1* 

Coarse 0.28 0.4 1 0.58 
Intermediate 0.37 0.44 0.56 
Refined 0.40 0.45 0.57 

* The results of P2-Pl element are from Cahouet and 
Chabard’ 

Table IV. Convergence rates for the 3D lid-driven cavity flow using non- 
uniform meshes defined by (28). For the unsteady case, Re,= 10, and for the 

steady case, Re,=O 

Mesh Q2-PO Q2-P1 Q2-PO Q2-P1 
Steady Steady Unsteady Unsteady 

Coarse 0.37 0.5 1 0.39 0.4 1 
Intermediate 0.43 0.62 0.48 0.55 
Refined 0.45 0.69 0.5 1 0.65 

Table V. Average CPU seconds per pressure iteration and per preconditioning for 
the steady flow where Re,,,=O 

Mesh Q2-PO Q2-PO Q2-P1 Q2-P1 
Precond.* Pressuret Precond.* Pressure? 

Coarse 0.0004 1.58 0.00 1 1.60 
Intermediate 0.002 28.70 0.005 28.3 
Refined 0.007 146.38 0.036 1 50.2 1 

* Precond. =CPU second per preconditioning 
t Pressure=CPU second per pressure iteration 

element is always greater than that using the Q2-PO element, the average time per iteration could 
be actually smaller. Table VI shows that solving equation (24) requires slightly less CPU time 
than that required to solve the momentum equation (7). 

For large 3D flow problems, full triquadratic velocity elements are generally expensive due to 
the large size of the momentum equation resulting from the large number of velocity nodes per 
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element. The proposed preconditioned algorithms can be applied (with equal effectiveness, we 
believe) to other types of stable piecewise Hermitian discontinuous pressure elements (satisfying 
inf-sup condition) where there are fewer velocity nodes per element. 

Applying the present preconditioned algorithm to the low order, unstable Ql-PO elementsI2 
(trilinear velocity and piecewise constant pressure), shows that it converges only for the coarse 
mesh. For the intermediate and the refined meshes, the algorithm does not converge, as shown by 
Vincent and Boyer.13 This indicates that the algorithm cannot be used with unstable elements 
which do not satisfy inf-sup condition. Recently, stabilized Q1-PO elements to which the iterative 
methods can be applied,14 have been developed. However, because of the presence of the 
stabilizing operator, the concept of splitting the preconditioner into the steady and unsteady part 
is not applicable, and a preconditioner such as that proposed by Vincent and Boyer13 must be 
adopted. 

Finally, we compare the efficiency of ICCG method with that of DSCG method for solving the 
momentum equation (7). The storage requirement of ICCG method is always greater than that of 
DSCG by the storage requirement of A since the incomplete Cholesky factorization of A is stored. 
Table VII summarizes their performance with respect to the Q2-PO element. The total CPU 

Table VI. Average CPU seconds per pressure iteration and per preconditioning 
for the unsteady flow where Re, = 10 

~~~ ~ 

Mesh Q2-PO Q2-PO Q2-P1 Q2-P 1 
Precond.* Pressure? Precond.* Pressure? 

Coarse 0.0 1 0.83 0.52 1.47 
Intermediate 024 11.08 9.83 21.86 
Refined 1.69 43.68 45.29 101.55 

* Precond. =CPU second per preconditioning 
t Pressure = CPU second per pressure iteration 

Table VII. Comparison of CPU time of ICCG and DSCG methods for solving the momentum equation 

Mesh ICCG method DSCG method 

NOIjCPU ICF set up NOIICPU DS set up 

Steady Unsteady Steady Unsteady 

Uniform meshes 
Coarse 11/15? 8/0.83 1-36 1111.74 8/0.9 1 0.004 

Refined 151146.38 8/43.68 1045.00 15/215.65 8/50.13 0.05 

Non-uniform meshes 
Coarse 151 1.65 1511.08 1.36 1513.0 15/1.83 0.004 

Refined 18/17 1.80 22/61.12 1044.10 18/412.49 221135.24 0.05 

Intermediate 14/28.70 8/11.08 94.87 14/39.08 8/12.78 0.02 

Intermediate 17/32.43 20114.03 94.87 17/73.17 20129.43 0.02 

~ ~~ 

ICF = Incomplete Cholesky factorization 
DS =Diagonal scaling 
NO1 =Number of iterations 
CPU=Average CPU seconds per iteration 
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seconds spent on the pressure iteration is the product of the number of pressure iterations and the 
CPU seconds per iteration. The overall CPU seconds is obtained by adding the set-up time. It is 
seen that the CPU time per iteration using ICCG is always smaller than that using DSCG. If one 
has a transient problem and the mesh does not change with time, ICCG method should be used 
unless the storage is a serious concern. For a large non-uniform mesh, say larger than the 
intermediate mesh, ICCG should also be used since in this case, the efficiency gain by reducing the 
pressure iteration number exceeds the incomplete factorization set-up cost. 

5. CONCLUSIONS 

Preconditioned Uzawa-type conjugate gradient finite element algorithms for solving 3D Stokes 
flow problems with respect to stable hexahedral discontinuous pressure elements have been 
presented and tested. The preconditioning scheme, which was developed2 for use with elements of 
continuous pressure profile, has been extended and modified to work with elements of piecewise 
constant discontinuous pressure interpolation. A new preconditioning scheme has been proposed 
for the elements of piecewise linear discontinuous pressure interpolation. 

It has been shown that the preconditioning schemes are very effective in reducing the number 
of pressure iterations, and the costs are very low for use with the Q2-PO element and moderate for 
use with the Q2-P1 element. When a piecewise constant pressure profile is used, the precondition- 
ing equations can be solved very efficiently by the finite volume method, and the solution 
converges faster than when a continuous pressure profile is used. For the discontinuous linear 
pressure elements, the proposed new preconditioning scheme has been verified by the test 
problem to be very effective, and not too costly. 

A major obstacle to applying the preconditioning idea of Cahouet and Chabard' to the Q2-PI 
element is the presence of the elemental centroidal pressure gradient in the numerical discretiz- 
ation. It would be interesting to examine its applicability to a Lagrangian based discontinuous 
pressure element where there are more than one pressure degree of freedom per element. For this 
type of elements, the pressure gradients do not occur. 
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APPENDIX 

To prove relation (lo), it is sufficient to show that for any trial function g satisfying 
W 

Ig(x)ldx<m and lirn lg(=O, Lrn IxlPm 

the following equation holds 

C; (-V -(a1 -vV')-'V)g=g. (31) 
Denoting 

W 

F ( g ) = j  g(x)ejk"dx and U,= -V*(al-vV2)-'V (32) 
- m  
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vhere j=J(-l), x=(x1,x2,x3), k = ( k l , k 2 , k 3 ) ,  and dx=dxldx2dx3, we have (see 
Reference 15), 

F(g)  F (V-2g) = - -, F(V2S)= - k 2 F ( g ) ,  F(V * 4) = jk  - F(& F ( V g )  = jkF( g), k2 

a + vk2 F (4) F((V1- - a v  -2)s) = ~ F(g)  and F ( ( a I - v V 2 ) - ’ 4 ) = -  
k2 a+ vk2’ (33) 

where k2 = k -  k = k l +  k$ + k ; .  

use of equation (33) yields 
Applying the Fourier transform to the left-hand side of equation (31) and repeatedly making 
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